
A Model-Based Design & Testing Approach

for Orion GN&C Flight Software Development

Joel Henry NASA-JSC

Project Orion

References

• This presentation is based on the following conference papers:

– A Model-Based Design & Testing Approach for Orion GN&C Flight Software

Development

• 2010 IEEE Aerospace Conference, paper #1491

– Orion GN&C Model Based Development: Experience and Lessons Learned

• 2012 AIAA GN&C Conference, paper #2012-5036

Project Orion

3

Overview

• Introduction

• GN&C FSW Development Process

• GN&C Architecture

• Development Tools

• Inspection Process and CSU Memo

• Unit Testing for Models and Autocode

• Rhapsody Architecture

• Process Benefits, Lessons Learned &
Challenges

Project Orion

Introduction: Orion GN&C Subsystem

Orion GN&C flight software developed using Model Based Design (MBD)

• Complex FSW executes GN&C for multiple mission phases (Ascent, Orbit, Entry)

– Interface with multiple sensors, effectors, and crew

– GN&C FSW executes in an ARINC 653 partition

Original design was for

LEO and Lunar Operations

(Scaled Back for EFT-1)

Early in the Orion program

Matlab/Simulink were

selected as GN&C

development Tool

Project Orion

Introduction: Exploration Flight Test One

• Orion will be the first human spacecraft built by NASA in 3 decades

• New flight-test based approach is now being used, so first mission for GN&C

software on Orion avionics will be Exploration Flight Test One (EFT-1)

– Previous Pad Abort One flight test also used MBD but a somewhat different process

– The EFT-1 mission includes an elliptical orbit designed to increase entry velocities to test thermal

components – commercial booster used for launch system

– FSW modes for EFT-1 include: Pad align, ascent navigation, orbit coast, CM translation burn,

guided direct entry, drogue rate damping, touchdown roll control

Project Orion

6

Development Process:

Traditional vs Model Based Development

Analysis,

Design

Cycles

FSW

Test &

Verif

GN&C

Subsys

Reqts

Code

Gen

(hand)

“Traditional” GN&C FSW Development

Orion GN&C FSW Development

“Spec”

GN&C

Alg. FSW

Reqts

“FSSR”

Algorithm

Prototyping

Hand-coding

FSW

Reqts

GN&C Algorithm Design & Analysis

Responsibility

GNC Team FSW Team

FSW Design, Implementation & Test

Closed-loop sims

GN&C

Subsys

Reqts

Algorithm

Prototyping

Analysis,

Design

Cycles

FSW

Design

Modeling Closed-loop sims

“SRS”

FSW

Design

FSW

Reqts Code

Gen

(auto)

GN&C Algorithm Design & Analysis

FSW Design, Implementation & Test

“Spec”

“SRS”

FSW

Test &

Verif

Matlab/Simulink/StateFlow + RTW

Modeling in Matlab/Simulink

is the “exeutable specification”,

and essentially replaces the “FSSR”

Project Orion

Development Process:

GN&C/FSW Team Interface

• Algorithms developed as

Computer Software Units

(CSU) using Simulink

• Integrated and matured using

RAMSES-M and tested using

RAMSES-M and RAMSES-A

GN&C algorithm and FSW development cycle

♦ After iterating and maturing algorithms in the “design loop” the autocoded CSU’s

were delivered to GN&C FSW, where they were integrated into the ARINC 653 GN&C

partition

� The GN&C partition may be executed either on target hardware (real-time only) or by using software

emulators. Partition development and test is referred to as the “production loop”

� Problems encountered during hardware integration that affect the Simulink models are fed back to

the GN&C team for rapid fixes. No manual modification of the autocode is allowed.

Project Orion

GN&C Architecture

• CSU’s are collected into rate groups (1 Hz, 5 Hz, 20 Hz and 40 Hz)

and then into domains (guidance, navigation, control) – this

simplifies the emulation of rate group interaction within Simulink

• Figure shows the top level RAMSES-M diagram with each rate

group

Project Orion

9

GN&C Architecture

• GNC design is a hierarchical decomposition
of flight software by flight phase & function

• Centralized GNC Executive coordinates via
GNC Activities

• Data Driven Lists, Modes, Configs

GN&C

Domain
GN&C Domain Functionality

GCI GN&C Command Interface

NVA Absolute Navigation

NVR Relative Navigation (Rendezvous)

NVE Ephemeris Processing

NHM Navigation Health Manager

GMP Vehicle Mass Properties

GDA Ascent Guidance

GDE Entry Guidance

GDO On-Orbit Guidance

GHM Guidance Health Manager

CNC Command-Module (CM) Control (Entry)

CNS Service-Module (SM) Control (Ascent, Orbit)

CNL Launch Abort System (LAS) Control (Ascent)

CNE Propulsion Engine Control

CNP Propulsion Systems Control

CHM Control Health Manager

Rhapsody

Simulink

Project Orion

Development Tools: Simulation Tools

♦ Termed The Rapid Algorithm MATLAB/Simulink Engineering Simulation

(RAMSES), the hybrid environment included two variants:

♦ RAMSES-M executed the GN&C algorithms in the native MATLAB process

♦ RAMSES-A executed the autocoded algorithms in a hand coded wrapper for

higher speed execution and Monte Carlo Analysis

Working, well understood legacy

simulations, together with the

desire/requirement for autocode led

to a hybrid tool set

legacy 6 DOF simulations were

attached to MATLAB process for

Simulink algorithm development,

debugging and test.

Hybrid Tools

Project Orion

Development Tools: GN&C CSU’s and Domains

• GNC CSU’s are expressed as

Simulink diagrams housed within

model reference blocks (MRBs)

– MRBs allow CSU’s to be housed in

separate files for configuration

management – simple subsystems

would mean that all changes are made

to a single file.

♦ Each CSU has 4 interfaces which are expressed as Simulink bus types:

� Inputs – time varying signals from upstream CSU’s or sensors

� Parameters – static values that are initialized upon SW load. Some parameters may be

changed on events by the automation and sequencing software.

� Outputs – signals produced for consumption by downstream CSU’s or effectors

� Telemetry – items needed for analysis of internal functioning

♦ Junction boxes pick off output signals from upstream CSUs or parameter

buses

♦ CSU’s are unit tested with drivers that populate inputs and parameters and

compare outputs.

Project Orion

Development Tools: Orion Library and CSU

Template

• Modeling library and template

– All Simulink atomic-level blocks were reproduced in an Orion library to

provide control over autocode configurations, standards on settings, etc.

This is highly recommended for serious MBD projects

– Orion developed a template for all CSU’s to provide uniformity, limit diagram

size in a layer, and provide printable artifacts.

– A standard configuration set was used by all CSUs to ensure compatibility

and autocode efficiency

Orion Block

Library

Orion CSU

Template

Project Orion

13

Development Tools:

Modeling Standards and Guidelines

Algorithm Type Simulink Stateflow eML Notes/examples

Simple Logic X

•if/then preferred

•switch/case

•for/while loops

Complex Logic X
•nested if/then preferred

•nested switch/case

•nested for/while loops

Simple/Short Numerical Expressions

Complex/Lengthy Numerical Expressions X X
either either

Ex: Difference equations, integrals,

derivatives, filters

*The actual integrator function can be

written in eML

Combination of:

•Complex Logic

•Simple Numerical Expressions

Combination of: X X
•Simple Logic either either

•Complex Numerical Expressions

Combination of
X X X

•Use Simulink or eML for the numerical

calculations

•Complex logic
either for Logic either

•Stateflow should invoke the execution

of this subsystem using a function-call

•Complex Numerical Expressions for Math for Math

Modal Logic

X

Where the control function to be

performed at the current time depends on

a combination of past and present logical

conditions

iterating a counter is considered a simple

numeric calculation

•Can use only Simulink, only eML or use

Simulink for the logic and eML for the

math

Numerical Expressions containing

continuously valued states
X*

X

X
Ex: <6 consecutive operations, <6

variables/signals

Ex: >6 consecutive operations, >6

variables/signals

X X

Ex: If/then with <5 paths and no nesting

X

Ex: If/then with numerous paths and

multiple levels of nesting

• When the program started, there were no

Aerospace Specific Modeling standards

• Needed a Standard for modeling the GN&C

algorithms in Simulink, Stateflow, and

embedded Matlab (eML).

• Started with Automotive Industry’s

published “MAAB” (MathWorks

Automotive Advisory Board) Standard

• This document was tailored (via GNC & FSW

splinter team) based on previous experiences

and known architectural drivers for the Orion

GN&C FSW.

• Standards are available from the

Mathworks website for the aerospace

community.

• Three major drivers behind the standards

• Compatibility

• Autocode Quality

• Readability

• Efficiency

Project Orion

Inspections and CSU Memo

• Detailed inspections were performed on the models, not autocode

– CSU Development Checklist were used to aid CSU preparation for

reviews

• CSU memo’s where generated to further document and clarify

design, derived requirements, and testing

Project Orion

Unit Testing:

FSW CSU Simulink Model Design & Test Workflow

• CSU design requirements and model

development is iterative

• Re-use of model component test suite by FSW

is a significant cost/schedule reduction

opportunity

Project Orion

Unit Testing

• Three types of Model

tests were developed:

– Non-Conforming

Confidence tests

– Conforming Confidence

tests

– Structural Tests

• 5 Types of Test Criteria

– Design requirements

– MCDC

– Error Handling

– Limits/Boundaries

– Threshold

Model Unit
Tests

Software and Other

Design Requirements:
Demonstrate the MR is
performing per the design
requirements to an
appropriate tolerance

Branch / Decision /

Statement Coverage:

Exercise 100% B/D/S
coverage

Local Error Handling:

Exercise local guard
conditions, exception
handlers, (etc) which
protect against critical
errors Limits & Boundaries:

Evaluate the nominal (+/-

eps) range of inputs for
units

Threshold:

Stress the data type range

and zero crossing

Test Criteria

Test Types

Model Based Unit Testing

Structural Test

Test data derived from

analysis of the code

structure. Little or no

regard for real-world

function.

Non-Conforming Confidence

Test

A test derived from the

requirements and domain

knowledge intended to

demonstrate the MR is

performing its intended

function without conforming to

the LDRA/TBrun constraints

Conforming Confidence

Test

A test derived from the

requirements and/or

analysis of the input

domains which conforms to

the LDRA/TBrun

constraints.

SystemTest/PIL

PSP/GHS

ISIM

CoreSim/

Simics

SystemTest/

Tbrun/

Simics

Test
Environments

Project Orion

Unit Testing: Processor-in-the-loop Testing

• Tests can be developed in the Matlab environment and run on

the emulated target environment for increased confidence early

in the development process

Project Orion

18

Process Benefits

1. GN&C Design & Analysis environment is merged with the FSW Development &

Test environment

• GN&C designers are directly involved in the flight implementation of the algorithms.

• Eliminates traditional “translation” phase of having FSW interpret GN&C’s written-word FSSRs,

thus eliminating potential source of error.

2. Orders of magnitude MORE run-time testing on the FSW source (compared to

Traditional process)

• FSW autocode is being used in all the analysis runs (not proto-code)

3. Reduces schedule risk.

• FSW implementation is largely complete and tested by CDR (vs. just starting)

4. Single, common algorithmic development environment with Matlab/Simulink.

• No mix of prototyping languages (like C, Fortran, Ada, and other analysis tools)

• Commonality fosters sharing, algorithm/utility reuse (i.e., Orion Std Lib) and consistency.

5. Use of RTW/Code-Gen by GN&C Team gives them “eyes-on” the flight code

• GN&C developers will gain working familiarity with autocode through the practice of generating it

themselves for closed-loop testing with the external simulations for analysis and debugging.

• Is value-added when needing to understand real-time performance or in-flight issues.

Project Orion

19

Process Benefits (cont)

6. “Code Inspections” supplemented, if not supplanted, by Model Inspections

• Can walk-through the source design graphically (don’t need PowerPoint facsimiles)

7. During Sustaining Engineering, modifications to the “Design Spec” (i.e., the MW

Models) can be directly autocoded.

• Continuous sync between design, documentation and FSW.

8. MathWorks tools are fast-becoming the “industry standard”

• Modern, prevalent toolset.

• Matlab programming has become the latest “language” being instituted in many university

aerospace curricula today (vs. C or Fortran).

Project Orion

20

Process Lessons Learned

1. Mandate Team-wide Use of a Common Matlab/Simulink version baseline

• Coordinating & baselining upgrades at mgmt level is needed for large teams w/ multiple companies

2. Prohibit Dependencies on MW Toolboxes (aside from RTW, V&V)

• Alleviates cost impacts across a large team.

3. Use centralized, customized libraries for “one-stop shopping”

(in lieu of MW toolboxes)

• Ensures the entire team is “on the same page” using only the corralled, approved blocks, which

adhere to the standards and are “autocodable”.

• Customization and masks ensures library blocks are used in the intended fashion.

4. Use a single, secure, collaborative, web-based sharing repository

• Minimum requirement for sharing models and releasing baselines across company lines, firewalls.

5. Every Domain and CSU should have a designated owner/Point of Contact (POC)

• The CSU POC is the single, acknowledged “hands-on owner” of the model (aids serial development)

6. Each CSU should be a Model Reference

• Allows CSU to be developed, maintained & config-managed as its own .mdl file (owned by 1 POC).

7. Each Domain sub-team should have a Code Gen POC

• Since RTW access and skill-base may be limited, 1 POC should be identified to help the others.

• Important for each Domain sub-team to ensure their CSUs integrate and gen-code (as quality check,

at a minimum) before submitting updates to the FSW team for the next baseline.

8. Modeling and algorithm nomenclature standards must be clearly documented,

trained, and maintained.

Project Orion

Process Lessons Learned (cont.)

• Scalability

– Time required to update and process (“Mex”) the Simulink diagram, generate

autocode and execute time domain simulation grew disproportionately with

project size with existing MBD tools

– Recommendation: See paper for multiple technical solutions to reduce build

and execute time, and consider splitting development environment into

mission phases – especially during early development

• Configuration Management

– Use model reference blocks to break MBD application into separate CM

artifacts, each with an assigned “owner”

– Avoid parallel development when possible

– Familiarize team with graphical merge tools and cost the training and

licenses

• Mixed Tool Development Environment

– Mixed C simulation and Simulink FSW was workable, but required a broad

range of skills for developers. Should probably be avoided for projects that

do not have the particular legacy of Orion

Project Orion

Conclusion

• Orion paid some upfront costs for transitioning to an MBD process:

– A steep learning curve for engineers not familiar with MBD tools

– Initially slow and complex development tools and processes

– Configuration management issues

• These issues were mitigated by many of the lessons learned,

improved Mathworks products and custom tools that are described

in the paper

• Some of the benefits that GN&C is now observing include:

– Detailed requirements review was replaced by review of MBD artifacts which

had proven functionality

– Automated test framework and report generation has simplified testing and

production of test artifacts

– Automated standards checking tools (e.g. Model Advisor) and graphical

artifacts have facilitated the inspection process

– No schedule time was needed for hand coding GN&C algorithms (40,000+

SLOC were autocoded by CDR)

